Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning

Autor: A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J-E Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, J. P. Marangos
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Nature Communications, Vol 8, Iss 1, Pp 1-9 (2017)
Druh dokumentu: article
ISSN: 2041-1723
DOI: 10.1038/ncomms15461
Popis: X-ray free-electron lasers, important light sources for materials research, suffer from shot-to-shot fluctuations that necessitate complex diagnostics. Here, the authors apply machine learning to accurately predict pulse properties, using parameters that can be acquired at high-repetition rates.
Databáze: Directory of Open Access Journals