Autor: |
A. Sanchez-Gonzalez, P. Micaelli, C. Olivier, T. R. Barillot, M. Ilchen, A. A. Lutman, A. Marinelli, T. Maxwell, A. Achner, M. Agåker, N. Berrah, C. Bostedt, J. D. Bozek, J. Buck, P. H. Bucksbaum, S. Carron Montero, B. Cooper, J. P. Cryan, M. Dong, R. Feifel, L. J. Frasinski, H. Fukuzawa, A. Galler, G. Hartmann, N. Hartmann, W. Helml, A. S. Johnson, A. Knie, A. O. Lindahl, J. Liu, K. Motomura, M. Mucke, C. O’Grady, J-E Rubensson, E. R. Simpson, R. J. Squibb, C. Såthe, K. Ueda, M. Vacher, D. J. Walke, V. Zhaunerchyk, R. N. Coffee, J. P. Marangos |
Jazyk: |
angličtina |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 8, Iss 1, Pp 1-9 (2017) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/ncomms15461 |
Popis: |
X-ray free-electron lasers, important light sources for materials research, suffer from shot-to-shot fluctuations that necessitate complex diagnostics. Here, the authors apply machine learning to accurately predict pulse properties, using parameters that can be acquired at high-repetition rates. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|