Analogies and Relations between Non-Additive Entropy Formulas and Gintropy

Autor: Tamás S. Biró, András Telcs, Antal Jakovác
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Entropy, Vol 26, Iss 3, p 185 (2024)
Druh dokumentu: article
ISSN: 1099-4300
DOI: 10.3390/e26030185
Popis: We explore formal similarities and mathematical transformation formulas between general trace-form entropies and the Gini index, originally used in quantifying income and wealth inequalities. We utilize the notion of gintropy introduced in our earlier works as a certain property of the Lorenz curve drawn in the map of the tail-integrated cumulative population and wealth fractions. In particular, we rediscover Tsallis’ q-entropy formula related to the Pareto distribution. As a novel result, we express the traditional entropy in terms of gintropy and reconstruct further non-additive formulas. A dynamical model calculation of the evolution of Gini index is also presented.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje