Autor: |
Tamás S. Biró, András Telcs, Antal Jakovác |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Entropy, Vol 26, Iss 3, p 185 (2024) |
Druh dokumentu: |
article |
ISSN: |
1099-4300 |
DOI: |
10.3390/e26030185 |
Popis: |
We explore formal similarities and mathematical transformation formulas between general trace-form entropies and the Gini index, originally used in quantifying income and wealth inequalities. We utilize the notion of gintropy introduced in our earlier works as a certain property of the Lorenz curve drawn in the map of the tail-integrated cumulative population and wealth fractions. In particular, we rediscover Tsallis’ q-entropy formula related to the Pareto distribution. As a novel result, we express the traditional entropy in terms of gintropy and reconstruct further non-additive formulas. A dynamical model calculation of the evolution of Gini index is also presented. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|