Multiple positive solutions for biharmonic equation of Kirchhoff type involving concave-convex nonlinearities

Autor: Fengjuan Meng, Fubao Zhang, Yuanyuan Zhang
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Electronic Journal of Differential Equations, Vol 2020, Iss 44,, Pp 1-15 (2020)
Druh dokumentu: article
ISSN: 1072-6691
Popis: In this article, we study the multiplicity of positive solutions for the biharmonic equation of Kirchhoff type involving concave-convex nonlinearities, $$ \Delta^2u-\Big(a+b\int_{\mathbb{R}^N}|\nabla u|^2dx\Big)\Delta u+V(x)u =\lambda f_1(x)|u|^{q-2}u+f_2(x)|u|^{p-2}u. $$ Using the Nehari manifold, Ekeland variational principle, and the theory of Lagrange multipliers, we prove that there are at least two positive solutions, one of which is a positive ground state solution.
Databáze: Directory of Open Access Journals