Autor: |
Fengjuan Meng, Fubao Zhang, Yuanyuan Zhang |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Electronic Journal of Differential Equations, Vol 2020, Iss 44,, Pp 1-15 (2020) |
Druh dokumentu: |
article |
ISSN: |
1072-6691 |
Popis: |
In this article, we study the multiplicity of positive solutions for the biharmonic equation of Kirchhoff type involving concave-convex nonlinearities, $$ \Delta^2u-\Big(a+b\int_{\mathbb{R}^N}|\nabla u|^2dx\Big)\Delta u+V(x)u =\lambda f_1(x)|u|^{q-2}u+f_2(x)|u|^{p-2}u. $$ Using the Nehari manifold, Ekeland variational principle, and the theory of Lagrange multipliers, we prove that there are at least two positive solutions, one of which is a positive ground state solution. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|