Deep reinforcement learning for data-driven adaptive scanning in ptychography

Autor: Marcel Schloz, Johannes Müller, Thomas C. Pekin, Wouter Van den Broek, Jacob Madsen, Toma Susi, Christoph T. Koch
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Scientific Reports, Vol 13, Iss 1, Pp 1-10 (2023)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-023-35740-1
Popis: Abstract We present a method that lowers the dose required for an electron ptychographic reconstruction by adaptively scanning the specimen, thereby providing the required spatial information redundancy in the regions of highest importance. The proposed method is built upon a deep learning model that is trained by reinforcement learning, using prior knowledge of the specimen structure from training data sets. We show that using adaptive scanning for electron ptychography outperforms alternative low-dose ptychography experiments in terms of reconstruction resolution and quality.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje