Autor: |
R. L. Johnson, C. R. Warner |
Jazyk: |
angličtina |
Rok vydání: |
2010 |
Předmět: |
|
Zdroj: |
Journal of Function Spaces and Applications, Vol 8, Iss 2, Pp 167-179 (2010) |
Druh dokumentu: |
article |
ISSN: |
0972-6802 |
DOI: |
10.1155/2010/524036 |
Popis: |
H1(R) is a Banach algebra which has better mapping properties under singular integrals than L1(R) . We show that its approximate identity sequences are unbounded by constructing one unbounded approximate identity sequence {vn}. We introduce a Banach algebra Q that properly lies between H1 and L1, and use it to show that c(1 + ln n) ≤ ||vn||H1 ≤ Cn1/2. We identify the maximal ideal space of H1 and give the appropriate version of Wiener's Tauberian theorem. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|