The convolution algebra H1(R)

Autor: R. L. Johnson, C. R. Warner
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Zdroj: Journal of Function Spaces and Applications, Vol 8, Iss 2, Pp 167-179 (2010)
Druh dokumentu: article
ISSN: 0972-6802
DOI: 10.1155/2010/524036
Popis: H1(R) is a Banach algebra which has better mapping properties under singular integrals than L1(R) . We show that its approximate identity sequences are unbounded by constructing one unbounded approximate identity sequence {vn}. We introduce a Banach algebra Q that properly lies between H1 and L1, and use it to show that c(1 + ln n) ≤ ||vn||H1 ≤ Cn1/2. We identify the maximal ideal space of H1 and give the appropriate version of Wiener's Tauberian theorem.
Databáze: Directory of Open Access Journals