A note on super integral rings
Autor: | Rajat Kanti Nath |
---|---|
Jazyk: | English<br />Portuguese |
Rok vydání: | 2019 |
Předmět: | |
Zdroj: | Boletim da Sociedade Paranaense de Matemática, Vol 38, Iss 4 (2019) |
Druh dokumentu: | article |
ISSN: | 0037-8712 2175-1188 |
DOI: | 10.5269/bspm.v38i4.39637 |
Popis: | Let $R$ be a nite non-commutative ring with center $Z(R)$. The commuting graph of $R$, denoted by $\Gamma_R$, is a simple undirected graph whose vertex set is $R\setminus Z(R)$ and two distinct vertices $x$ and $y$ are adjacent if and only if $xy = yx$. Let$\Spec(\Gamma_R), \L-Spec(\GammaR)$ and $\Q-Spec(\GammaR)$ denote the spectrum, Laplacian spectrum and signless Laplacian spectrum of $\Gamma_R$ respectively. A nite non-commutative ring $R$ is called super integral if $\Spec(\Gamma_R), \L-Spec(Gamma_R)$ and $\Q-Spec(\Gamma_R)$ contain only integers. In this paper, we obtain several classes of super integral rings. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |