A note on super integral rings

Autor: Rajat Kanti Nath
Jazyk: English<br />Portuguese
Rok vydání: 2019
Předmět:
Zdroj: Boletim da Sociedade Paranaense de Matemática, Vol 38, Iss 4 (2019)
Druh dokumentu: article
ISSN: 0037-8712
2175-1188
DOI: 10.5269/bspm.v38i4.39637
Popis: Let $R$ be a nite non-commutative ring with center $Z(R)$. The commuting graph of $R$, denoted by $\Gamma_R$, is a simple undirected graph whose vertex set is $R\setminus Z(R)$ and two distinct vertices $x$ and $y$ are adjacent if and only if $xy = yx$. Let$\Spec(\Gamma_R), \L-Spec(\GammaR)$ and $\Q-Spec(\GammaR)$ denote the spectrum, Laplacian spectrum and signless Laplacian spectrum of $\Gamma_R$ respectively. A nite non-commutative ring $R$ is called super integral if $\Spec(\Gamma_R), \L-Spec(Gamma_R)$ and $\Q-Spec(\Gamma_R)$ contain only integers. In this paper, we obtain several classes of super integral rings.
Databáze: Directory of Open Access Journals