Autor: |
M. Dana, R. Yousefi |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Journal of Inequalities and Applications, Vol 2020, Iss 1, Pp 1-9 (2020) |
Druh dokumentu: |
article |
ISSN: |
1029-242X |
DOI: |
10.1186/s13660-020-02367-z |
Popis: |
Abstract We say that a Drazin invertible operator T on Hilbert space is of class [ D N ] $[DN]$ if T D T ∗ = T ∗ T D $T^{D}T^{*} = T^{*}T^{D}$ . The authors in (Oper. Matrices 12(2):465–487, 2018) studied several properties of this class. We prove the Fuglede–Putnam commutativity theorem for D-normal operators. Also, we show that T has the Bishop property ( β ) $(\beta)$ . Finally, we generalize a very famous result on products of normal operators due to I. Kaplansky to D-normal matrices. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|