Autor: |
Akbar Tayebi, Wei Sin Koh |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 12, Iss 13, p 2141 (2024) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math12132141 |
Popis: |
Let (M,F) be a Finsler surface with the isotropic main scalar I=I(x). The well-known Berwald’s theorem states that F is a Berwald metric if and only if it has a constant main scalar I=constant. This ensures a kind of equality of two non-Riemannian quantities for Finsler surfaces. In this paper, we consider a positively curved Finsler surface and show that H=0 if and only if I=0. This provides an extension of Berwald’s theorem. It follows that F has an isotropic scalar flag curvature if and only if it is Riemannian. Our results yield an infrastructural development of some equalities for two-dimensional Finsler manifolds. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|