On Finsler Surfaces with Isotropic Main Scalar

Autor: Akbar Tayebi, Wei Sin Koh
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Mathematics, Vol 12, Iss 13, p 2141 (2024)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math12132141
Popis: Let (M,F) be a Finsler surface with the isotropic main scalar I=I(x). The well-known Berwald’s theorem states that F is a Berwald metric if and only if it has a constant main scalar I=constant. This ensures a kind of equality of two non-Riemannian quantities for Finsler surfaces. In this paper, we consider a positively curved Finsler surface and show that H=0 if and only if I=0. This provides an extension of Berwald’s theorem. It follows that F has an isotropic scalar flag curvature if and only if it is Riemannian. Our results yield an infrastructural development of some equalities for two-dimensional Finsler manifolds.
Databáze: Directory of Open Access Journals