Properties of meromorphic solutions of first-order differential-difference equations

Autor: Wu Lihao, Chen Baoqin, Li Sheng
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Open Mathematics, Vol 21, Iss 1, Pp 8890-8902 (2023)
Druh dokumentu: article
ISSN: 2391-5455
DOI: 10.1515/math-2023-0147
Popis: For the first-order differential-difference equations of the form A(z)f(z+1)+B(z)f′(z)+C(z)f(z)=F(z),A\left(z)f\left(z+1)+B\left(z)f^{\prime} \left(z)+C\left(z)f\left(z)=F\left(z), where A(z),B(z),C(z)A\left(z),B\left(z),C\left(z), and F(z)F\left(z) are polynomials, the existence, growth, zeros, poles, and fixed points of their nonconstant meromorphic solutions are investigated. It is shown that all nonconstant meromorphic solutions are transcendental when degB(z)
Databáze: Directory of Open Access Journals