Properties of meromorphic solutions of first-order differential-difference equations
Autor: | Wu Lihao, Chen Baoqin, Li Sheng |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Open Mathematics, Vol 21, Iss 1, Pp 8890-8902 (2023) |
Druh dokumentu: | article |
ISSN: | 2391-5455 |
DOI: | 10.1515/math-2023-0147 |
Popis: | For the first-order differential-difference equations of the form A(z)f(z+1)+B(z)f′(z)+C(z)f(z)=F(z),A\left(z)f\left(z+1)+B\left(z)f^{\prime} \left(z)+C\left(z)f\left(z)=F\left(z), where A(z),B(z),C(z)A\left(z),B\left(z),C\left(z), and F(z)F\left(z) are polynomials, the existence, growth, zeros, poles, and fixed points of their nonconstant meromorphic solutions are investigated. It is shown that all nonconstant meromorphic solutions are transcendental when degB(z) |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |