On Strong Convergence of Halpern’s Method for Quasi-Nonexpansive Mappings in Hilbert Spaces

Autor: Jesus Garcia Falset, Enrique Llorens-Fuster, Giuseppe Marino, Angela Rugiano
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Mathematical Modelling and Analysis, Vol 21, Iss 1 (2016)
Druh dokumentu: article
ISSN: 13926292
1392-6292
1648-3510
DOI: 10.3846/13926292.2016.1132787
Popis: In this paper, we introduce a Halpern’s type method to approximate common fixed points of a nonexpansive mapping T and a strongly quasi-nonexpansive mappings S, defined in a Hilbert space, such that I − S is demiclosed at 0. The result shows as the same algorithm converges to different points, depending on the assumptions of the coefficients. Moreover, a numerical example of our iterative scheme is given.
Databáze: Directory of Open Access Journals