On Strong Convergence of Halpern’s Method for Quasi-Nonexpansive Mappings in Hilbert Spaces
Autor: | Jesus Garcia Falset, Enrique Llorens-Fuster, Giuseppe Marino, Angela Rugiano |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: | |
Zdroj: | Mathematical Modelling and Analysis, Vol 21, Iss 1 (2016) |
Druh dokumentu: | article |
ISSN: | 13926292 1392-6292 1648-3510 |
DOI: | 10.3846/13926292.2016.1132787 |
Popis: | In this paper, we introduce a Halpern’s type method to approximate common fixed points of a nonexpansive mapping T and a strongly quasi-nonexpansive mappings S, defined in a Hilbert space, such that I − S is demiclosed at 0. The result shows as the same algorithm converges to different points, depending on the assumptions of the coefficients. Moreover, a numerical example of our iterative scheme is given. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |