Partial regularity and higher integrability for A-quasiconvex variational problems
Autor: | Li, Zhuolin, Raiţă, Bogdan |
---|---|
Rok vydání: | 2024 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that minimizers of variational problems $$ \mbox{minimize}\quad \mathcal E(v)=\int_\Omega f(x,v(x))\mathrm{d} x\quad\text{for } \mathscr{A} v=0, $$ are partially continuous provided that the integrands $f$ are strongly $\mathscr{A}$-quasiconvex in a suitable sense. We consider $p$-growth problems with $1Comment: 36 pages |
Databáze: | arXiv |
Externí odkaz: |