Partial regularity and higher integrability for A-quasiconvex variational problems

Autor: Li, Zhuolin, Raiţă, Bogdan
Rok vydání: 2024
Předmět:
Druh dokumentu: Working Paper
Popis: We prove that minimizers of variational problems $$ \mbox{minimize}\quad \mathcal E(v)=\int_\Omega f(x,v(x))\mathrm{d} x\quad\text{for } \mathscr{A} v=0, $$ are partially continuous provided that the integrands $f$ are strongly $\mathscr{A}$-quasiconvex in a suitable sense. We consider $p$-growth problems with $1Comment: 36 pages
Databáze: arXiv