Flipping Heegaard splittings and minimal surfaces

Autor: Ketover, Daniel
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: We show that the number of genus $g$ embedded minimal surfaces in $\mathbb{S}^3$ tends to infinity as $g\rightarrow\infty$. The surfaces we construct resemble doublings of the Clifford torus with curvature blowing up along torus knots as $g\rightarrow\infty$, and arise from a two-parameter min-max scheme in lens spaces. More generally, by stabilizing and flipping Heegaard foliations we produce index at most $2$ minimal surfaces with controlled topological type in arbitrary Riemannian three-manifolds.
Comment: 55 pages
Databáze: arXiv