Flipping Heegaard splittings and minimal surfaces
Autor: | Ketover, Daniel |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We show that the number of genus $g$ embedded minimal surfaces in $\mathbb{S}^3$ tends to infinity as $g\rightarrow\infty$. The surfaces we construct resemble doublings of the Clifford torus with curvature blowing up along torus knots as $g\rightarrow\infty$, and arise from a two-parameter min-max scheme in lens spaces. More generally, by stabilizing and flipping Heegaard foliations we produce index at most $2$ minimal surfaces with controlled topological type in arbitrary Riemannian three-manifolds. Comment: 55 pages |
Databáze: | arXiv |
Externí odkaz: |