Noncommutative maximal ergodic inequalities for amenable groups

Autor: Cadilhac, Léonard, Wang, Simeng
Rok vydání: 2022
Předmět:
Druh dokumentu: Working Paper
Popis: We prove a pointwise ergodic theorem for actions of amenable groups on noncommutative measure spaces. To do so, we establish the maximal ergodic inequality for averages of operator-valued functions on amenable groups. The main arguments are a geometric construction of martingales based on the Ornstein-Weiss quasi-tilings and harmonic analytic estimates coming from noncommutative Calder\'on-Zygmund theory.
Comment: Preliminary version, comments are welcome. 22 pages
Databáze: arXiv