Noncommutative maximal ergodic inequalities for amenable groups
Autor: | Cadilhac, Léonard, Wang, Simeng |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove a pointwise ergodic theorem for actions of amenable groups on noncommutative measure spaces. To do so, we establish the maximal ergodic inequality for averages of operator-valued functions on amenable groups. The main arguments are a geometric construction of martingales based on the Ornstein-Weiss quasi-tilings and harmonic analytic estimates coming from noncommutative Calder\'on-Zygmund theory. Comment: Preliminary version, comments are welcome. 22 pages |
Databáze: | arXiv |
Externí odkaz: |