Integer colorings with no rainbow $k$-term arithmetic progression

Autor: Lin, Hao, Wang, Guanghui, Zhou, Wenling
Rok vydání: 2022
Předmět:
Zdroj: European Journal of Combinatorics (2022)
Druh dokumentu: Working Paper
Popis: In this paper, we study the rainbow Erd\H{o}s-Rothschild problem with respect to $k$-term arithmetic progressions. For a set of positive integers $S \subseteq [n]$, an $r$-coloring of $S$ is \emph{rainbow $k$-AP-free} if it contains no rainbow $k$-term arithmetic progression. Let $g_{r,k}(S)$ denote the number of rainbow $k$-AP-free $r$-colorings of $S$. For sufficiently large $n$ and fixed integers $r\ge k\ge 3$, we show that $g_{r,k}(S)
Databáze: arXiv