Autor: |
Lin, Hao, Wang, Guanghui, Zhou, Wenling |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
European Journal of Combinatorics (2022) |
Druh dokumentu: |
Working Paper |
Popis: |
In this paper, we study the rainbow Erd\H{o}s-Rothschild problem with respect to $k$-term arithmetic progressions. For a set of positive integers $S \subseteq [n]$, an $r$-coloring of $S$ is \emph{rainbow $k$-AP-free} if it contains no rainbow $k$-term arithmetic progression. Let $g_{r,k}(S)$ denote the number of rainbow $k$-AP-free $r$-colorings of $S$. For sufficiently large $n$ and fixed integers $r\ge k\ge 3$, we show that $g_{r,k}(S)
|
Databáze: |
arXiv |
Externí odkaz: |
|