Remarks on the vanishing viscosity process of state-constraint Hamilton-Jacobi equations

Autor: Han, Yuxi, Tu, Son N. T.
Rok vydání: 2021
Předmět:
Zdroj: Appl Math Optim 86, 3 (2022)
Druh dokumentu: Working Paper
DOI: 10.1007/s00245-022-09874-z
Popis: We investigate the convergence rate in the vanishing viscosity process of the solutions to the subquadratic state-constraint Hamilton-Jacobi equations. We give two different proofs of the fact that, for nonnegative Lipschitz data that vanish on the boundary, the rate of convergence is $\mathcal{O}(\sqrt{\varepsilon})$ in the interior. Moreover, the one-sided rate can be improved to $\mathcal{O}(\varepsilon)$ for nonnegative compactly supported data and $\mathcal{O}(\varepsilon^{1/p})$ (where $1
Databáze: arXiv