Remarks on the vanishing viscosity process of state-constraint Hamilton-Jacobi equations
Autor: | Han, Yuxi, Tu, Son N. T. |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Appl Math Optim 86, 3 (2022) |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00245-022-09874-z |
Popis: | We investigate the convergence rate in the vanishing viscosity process of the solutions to the subquadratic state-constraint Hamilton-Jacobi equations. We give two different proofs of the fact that, for nonnegative Lipschitz data that vanish on the boundary, the rate of convergence is $\mathcal{O}(\sqrt{\varepsilon})$ in the interior. Moreover, the one-sided rate can be improved to $\mathcal{O}(\varepsilon)$ for nonnegative compactly supported data and $\mathcal{O}(\varepsilon^{1/p})$ (where $1
|
Databáze: | arXiv |
Externí odkaz: |