Non-topological fractional fermion number in the Jackiw-Rossi model
Autor: | Almeida, Caio, Alonso-Izquierdo, Alberto, Fresneda, Rodrigo, Guilarte, Juan Mateos, Vassilevich, Dmitri |
---|---|
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Phys. Rev. D 103, 125015 (2021) |
Druh dokumentu: | Working Paper |
DOI: | 10.1103/PhysRevD.103.125015 |
Popis: | We compute the vacuum fermion current in $(2+1)$ dimensional Jackiw-Rossi model by using the $1/m$ expansion. The current is expressed through a weighted $\eta$-function with a matrix weight. In the presence of such a weight, the usual proof of topological nature of $\eta(0)$ is not longer applicable. Direct computations confirm the following surprising result: the fermion number induced by vortices in the Jackiw-Rossi model is \textit{not} topological. Comment: 8 pages, revtex |
Databáze: | arXiv |
Externí odkaz: |