Non-topological fractional fermion number in the Jackiw-Rossi model

Autor: Almeida, Caio, Alonso-Izquierdo, Alberto, Fresneda, Rodrigo, Guilarte, Juan Mateos, Vassilevich, Dmitri
Rok vydání: 2021
Předmět:
Zdroj: Phys. Rev. D 103, 125015 (2021)
Druh dokumentu: Working Paper
DOI: 10.1103/PhysRevD.103.125015
Popis: We compute the vacuum fermion current in $(2+1)$ dimensional Jackiw-Rossi model by using the $1/m$ expansion. The current is expressed through a weighted $\eta$-function with a matrix weight. In the presence of such a weight, the usual proof of topological nature of $\eta(0)$ is not longer applicable. Direct computations confirm the following surprising result: the fermion number induced by vortices in the Jackiw-Rossi model is \textit{not} topological.
Comment: 8 pages, revtex
Databáze: arXiv