Cluster points of jumping numbers of toric plurisubharmonic functions
Autor: | Seo, Hoseob |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Journal of Geometric Analysis (2021) |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s12220-021-00730-0. |
Popis: | We show that the set of cluster points of jumping numbers of a toric plurisubharmonic function in $\mathbf{C}^n$ is discrete for every $n \ge 1$. We also give a precise characterization of the set of those cluster points. These generalize a recent result of D. Kim and H. Seo from $n=2$ to arbitrary dimension. Our method is to analyze the asymptotic behaviors of Newton convex bodies associated to toric plurisubharmonic functions. Comment: 8 pages |
Databáze: | arXiv |
Externí odkaz: |