Cluster points of jumping numbers of toric plurisubharmonic functions

Autor: Seo, Hoseob
Rok vydání: 2020
Předmět:
Zdroj: Journal of Geometric Analysis (2021)
Druh dokumentu: Working Paper
DOI: 10.1007/s12220-021-00730-0.
Popis: We show that the set of cluster points of jumping numbers of a toric plurisubharmonic function in $\mathbf{C}^n$ is discrete for every $n \ge 1$. We also give a precise characterization of the set of those cluster points. These generalize a recent result of D. Kim and H. Seo from $n=2$ to arbitrary dimension. Our method is to analyze the asymptotic behaviors of Newton convex bodies associated to toric plurisubharmonic functions.
Comment: 8 pages
Databáze: arXiv