divergent Fourier series in function spaces near $L^1[0;1]$

Autor: Kopaliani, Tengiz, Samashvili, Nino, Zviadadze, Shalva
Rok vydání: 2020
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1016/j.jmaa.2021.125558
Popis: In this paper we generalize Bochkariev's theorem, which states that for any uniformly bounded orthonormal system $\Phi$, there exists a Lebesgue integrable function such that the Fourier series of it with respect to system $\Phi$ diverge on the set of positive measure. We characterize the class of variable exponent Lebesgue spaces $L^{p(\cdot)}[0;1]$, $1
Databáze: arXiv