divergent Fourier series in function spaces near $L^1[0;1]$
Autor: | Kopaliani, Tengiz, Samashvili, Nino, Zviadadze, Shalva |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.jmaa.2021.125558 |
Popis: | In this paper we generalize Bochkariev's theorem, which states that for any uniformly bounded orthonormal system $\Phi$, there exists a Lebesgue integrable function such that the Fourier series of it with respect to system $\Phi$ diverge on the set of positive measure. We characterize the class of variable exponent Lebesgue spaces $L^{p(\cdot)}[0;1]$, $1
|
Databáze: | arXiv |
Externí odkaz: |