GIT Stability of Henon Maps

Autor: Lee, Chong Gyu, Silverman, Joseph H.
Rok vydání: 2019
Předmět:
Druh dokumentu: Working Paper
Popis: In this paper we study the locus of generalized degree $d$ Henon maps in the parameter space $\operatorname{Rat}_d^N$ of degree $d$ rational maps $\mathbb{P}^N\to\mathbb{P}^N$ modulo the conjugation action of $\operatorname{SL}_{N+1}$. We show that Henon maps are in the GIT unstable locus if $N\ge3$ or $d\ge3$, and that they are semistable, but not stable, in the remaining case of $N=d=2$. We also give a general classification of all unstable maps in $\operatorname{Rat}_2^2$.
Comment: 9 pages
Databáze: arXiv