GIT Stability of Henon Maps
Autor: | Lee, Chong Gyu, Silverman, Joseph H. |
---|---|
Rok vydání: | 2019 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this paper we study the locus of generalized degree $d$ Henon maps in the parameter space $\operatorname{Rat}_d^N$ of degree $d$ rational maps $\mathbb{P}^N\to\mathbb{P}^N$ modulo the conjugation action of $\operatorname{SL}_{N+1}$. We show that Henon maps are in the GIT unstable locus if $N\ge3$ or $d\ge3$, and that they are semistable, but not stable, in the remaining case of $N=d=2$. We also give a general classification of all unstable maps in $\operatorname{Rat}_2^2$. Comment: 9 pages |
Databáze: | arXiv |
Externí odkaz: |