Catalan functions and $k$-Schur positivity

Autor: Blasiak, Jonah, Morse, Jennifer, Pun, Anna, Summers, Daniel
Rok vydání: 2018
Předmět:
Druh dokumentu: Working Paper
Popis: We prove that graded $k$-Schur functions are $G$-equivariant Euler characteristics of vector bundles on the flag variety, settling a conjecture of Chen-Haiman. We expose a new miraculous shift invariance property of the graded $k$-Schur functions and resolve the Schur positivity and $k$-branching conjectures in the strongest possible terms by providing direct combinatorial formulas using strong marked tableaux.
Comment: 43 pages, 2 figures
Databáze: arXiv