Catalan functions and $k$-Schur positivity
Autor: | Blasiak, Jonah, Morse, Jennifer, Pun, Anna, Summers, Daniel |
---|---|
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that graded $k$-Schur functions are $G$-equivariant Euler characteristics of vector bundles on the flag variety, settling a conjecture of Chen-Haiman. We expose a new miraculous shift invariance property of the graded $k$-Schur functions and resolve the Schur positivity and $k$-branching conjectures in the strongest possible terms by providing direct combinatorial formulas using strong marked tableaux. Comment: 43 pages, 2 figures |
Databáze: | arXiv |
Externí odkaz: |