Optimal spline spaces for $L^2$ $n$-width problems with boundary conditions

Autor: Floater, Michael S., Sande, Espen
Rok vydání: 2017
Předmět:
Zdroj: Constr Approx (2019) 50:1
Druh dokumentu: Working Paper
DOI: 10.1007/s00365-018-9427-5
Popis: In this paper we show that, with respect to the $L^2$ norm, three classes of functions in $H^r(0,1)$, defined by certain boundary conditions, admit optimal spline spaces of all degrees $\geq r-1$, and all these spline spaces have uniform knots.
Comment: 17 pages, 4 figures. Fixed a typo. Article published in Constructive Approximation
Databáze: arXiv