Optimal spline spaces for $L^2$ $n$-width problems with boundary conditions
Autor: | Floater, Michael S., Sande, Espen |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Constr Approx (2019) 50:1 |
Druh dokumentu: | Working Paper |
DOI: | 10.1007/s00365-018-9427-5 |
Popis: | In this paper we show that, with respect to the $L^2$ norm, three classes of functions in $H^r(0,1)$, defined by certain boundary conditions, admit optimal spline spaces of all degrees $\geq r-1$, and all these spline spaces have uniform knots. Comment: 17 pages, 4 figures. Fixed a typo. Article published in Constructive Approximation |
Databáze: | arXiv |
Externí odkaz: |