Fine approximation of convex bodies by polytopes

Autor: Naszódi, Márton, Nazarov, Fedor, Ryabogin, Dmitry
Rok vydání: 2017
Předmět:
Druh dokumentu: Working Paper
Popis: We prove that for every convex body $K$ with the center of mass at the origin and every $\varepsilon\in \left(0,\frac{1}{2}\right)$, there exists a convex polytope $P$ with at most $e^{O(d)}\varepsilon^{-\frac{d-1}{2}}$ vertices such that $(1-\varepsilon)K\subset P\subset K$.
Comment: 12 pages, 5 figures
Databáze: arXiv