Fine approximation of convex bodies by polytopes
Autor: | Naszódi, Márton, Nazarov, Fedor, Ryabogin, Dmitry |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | We prove that for every convex body $K$ with the center of mass at the origin and every $\varepsilon\in \left(0,\frac{1}{2}\right)$, there exists a convex polytope $P$ with at most $e^{O(d)}\varepsilon^{-\frac{d-1}{2}}$ vertices such that $(1-\varepsilon)K\subset P\subset K$. Comment: 12 pages, 5 figures |
Databáze: | arXiv |
Externí odkaz: |