Cohen-Macaulay modules over the algebra of planar quasi-invariants and Calogero-Moser systems

Autor: Burban, Igor, Zheglov, Alexander
Rok vydání: 2017
Předmět:
Druh dokumentu: Working Paper
DOI: 10.1112/plms.12341
Popis: In this paper, we study properties of the algebras of planar quasi-invariants. These algebras are Cohen-Macaulay and Gorenstein in codimension one. Using the technique of matrix problems, we classify all Cohen-Macaulay modules of rank one over them and determine their Picard groups. In terms of this classification, we describe the spectral modules of the planar rational Calogero-Moser systems. Finally, we elaborate the theory of the algebraic inverse scattering method, computing a new unexpected explicit example of a deformed Calogero-Moser system.
Comment: 50 pages, some misprints corrected
Databáze: arXiv