Cohen-Macaulay modules over the algebra of planar quasi-invariants and Calogero-Moser systems
Autor: | Burban, Igor, Zheglov, Alexander |
---|---|
Rok vydání: | 2017 |
Předmět: | |
Druh dokumentu: | Working Paper |
DOI: | 10.1112/plms.12341 |
Popis: | In this paper, we study properties of the algebras of planar quasi-invariants. These algebras are Cohen-Macaulay and Gorenstein in codimension one. Using the technique of matrix problems, we classify all Cohen-Macaulay modules of rank one over them and determine their Picard groups. In terms of this classification, we describe the spectral modules of the planar rational Calogero-Moser systems. Finally, we elaborate the theory of the algebraic inverse scattering method, computing a new unexpected explicit example of a deformed Calogero-Moser system. Comment: 50 pages, some misprints corrected |
Databáze: | arXiv |
Externí odkaz: |