Quantum Ergodicity and Averaging Operators on the Sphere
Autor: | Brooks, Shimon, Masson, Etienne Le, Lindenstrauss, Elon |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Int Math Res Notices (2016) 2016 (19): 6034-6064 |
Druh dokumentu: | Working Paper |
Popis: | We prove quantum ergodicity for certain orthonormal bases of $L^2(\mathbb{S}^2)$, consisting of joint eigenfunctions of the Laplacian on $\mathbb{S}^2$ and the discrete averaging operator over a finite set of rotations, generating a free group. If in addition the rotations are algebraic we give a quantified version of this result. The methods used also give a new, simplified proof of quantum ergodicity for large regular graphs. Comment: 27 pages |
Databáze: | arXiv |
Externí odkaz: |