Quantum Ergodicity and Averaging Operators on the Sphere

Autor: Brooks, Shimon, Masson, Etienne Le, Lindenstrauss, Elon
Rok vydání: 2015
Předmět:
Zdroj: Int Math Res Notices (2016) 2016 (19): 6034-6064
Druh dokumentu: Working Paper
Popis: We prove quantum ergodicity for certain orthonormal bases of $L^2(\mathbb{S}^2)$, consisting of joint eigenfunctions of the Laplacian on $\mathbb{S}^2$ and the discrete averaging operator over a finite set of rotations, generating a free group. If in addition the rotations are algebraic we give a quantified version of this result. The methods used also give a new, simplified proof of quantum ergodicity for large regular graphs.
Comment: 27 pages
Databáze: arXiv