Solutions of the Pell equations x^2-(a^2+2a)y^2=N via generalized Fibonacci and Lucas numbers
Autor: | Peker, Bilge |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Druh dokumentu: | Working Paper |
Popis: | In this study, we find continued fraction expansion of sqrt(d) when d=a^2+2a where a is positive integer. We consider the integer solutions of the Pell equation x^2-(a^2+2a)y^2=N when N={-1,+1,-4,+4}. We formulate the n-th solution (x_{n},y_{n}) by using the continued fraction expansion. We also formulate the n-th solution (x_{n},y_{n}) via the generalized Fibonacci and Lucas sequences. Comment: 5 pages. arXiv admin note: substantial text overlap with arXiv:1303.1838 |
Databáze: | arXiv |
Externí odkaz: |