Solutions of the Pell equations x^2-(a^2+2a)y^2=N via generalized Fibonacci and Lucas numbers

Autor: Peker, Bilge
Rok vydání: 2013
Předmět:
Druh dokumentu: Working Paper
Popis: In this study, we find continued fraction expansion of sqrt(d) when d=a^2+2a where a is positive integer. We consider the integer solutions of the Pell equation x^2-(a^2+2a)y^2=N when N={-1,+1,-4,+4}. We formulate the n-th solution (x_{n},y_{n}) by using the continued fraction expansion. We also formulate the n-th solution (x_{n},y_{n}) via the generalized Fibonacci and Lucas sequences.
Comment: 5 pages. arXiv admin note: substantial text overlap with arXiv:1303.1838
Databáze: arXiv