$G-$Decompositions of Matrices and Related Problems I

Autor: Ganikhodjaev, Rasul, Mukhamedov, Farrukh, Saburov, Mansoor
Rok vydání: 2010
Předmět:
Zdroj: Linear Algebra and its Applications 436 (2012) 1344--1366
Druh dokumentu: Working Paper
DOI: 10.1016/j.laa.2011.08.012
Popis: In the present paper we introduce a notion of $G-$decompositions of matrices. Main result of the paper is that a symmetric matrix $A_m$ has a $G-$decomposition in the class of stochastic (resp. substochastic) matrices if and only if $A_m$ belongs to the set ${\mathbf{U}}^m$ (resp. ${\mathbf{U}}_m$). To prove the main result, we study extremal points and geometrical structures of the sets ${\mathbf{U}}^m$, ${\mathbf{U}}_m$. Note that such kind of investigations enables to study Birkhoff's problem for quadratic $G-$doubly stochastic operators.
Comment: 23 pages
Databáze: arXiv