$G-$Decompositions of Matrices and Related Problems I
Autor: | Ganikhodjaev, Rasul, Mukhamedov, Farrukh, Saburov, Mansoor |
---|---|
Rok vydání: | 2010 |
Předmět: | |
Zdroj: | Linear Algebra and its Applications 436 (2012) 1344--1366 |
Druh dokumentu: | Working Paper |
DOI: | 10.1016/j.laa.2011.08.012 |
Popis: | In the present paper we introduce a notion of $G-$decompositions of matrices. Main result of the paper is that a symmetric matrix $A_m$ has a $G-$decomposition in the class of stochastic (resp. substochastic) matrices if and only if $A_m$ belongs to the set ${\mathbf{U}}^m$ (resp. ${\mathbf{U}}_m$). To prove the main result, we study extremal points and geometrical structures of the sets ${\mathbf{U}}^m$, ${\mathbf{U}}_m$. Note that such kind of investigations enables to study Birkhoff's problem for quadratic $G-$doubly stochastic operators. Comment: 23 pages |
Databáze: | arXiv |
Externí odkaz: |